3.5.59 \(\int \sec (c+d x) (a+b \sec (c+d x))^2 \, dx\) [459]

Optimal. Leaf size=59 \[ \frac {\left (2 a^2+b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {2 a b \tan (c+d x)}{d}+\frac {b^2 \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

1/2*(2*a^2+b^2)*arctanh(sin(d*x+c))/d+2*a*b*tan(d*x+c)/d+1/2*b^2*sec(d*x+c)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3873, 3852, 8, 4131, 3855} \begin {gather*} \frac {\left (2 a^2+b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {2 a b \tan (c+d x)}{d}+\frac {b^2 \tan (c+d x) \sec (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + b*Sec[c + d*x])^2,x]

[Out]

((2*a^2 + b^2)*ArcTanh[Sin[c + d*x]])/(2*d) + (2*a*b*Tan[c + d*x])/d + (b^2*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \sec (c+d x) (a+b \sec (c+d x))^2 \, dx &=(2 a b) \int \sec ^2(c+d x) \, dx+\int \sec (c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac {b^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \left (2 a^2+b^2\right ) \int \sec (c+d x) \, dx-\frac {(2 a b) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac {\left (2 a^2+b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {2 a b \tan (c+d x)}{d}+\frac {b^2 \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 45, normalized size = 0.76 \begin {gather*} \frac {\left (2 a^2+b^2\right ) \tanh ^{-1}(\sin (c+d x))+b (4 a+b \sec (c+d x)) \tan (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + b*Sec[c + d*x])^2,x]

[Out]

((2*a^2 + b^2)*ArcTanh[Sin[c + d*x]] + b*(4*a + b*Sec[c + d*x])*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 69, normalized size = 1.17

method result size
derivativedivides \(\frac {a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 b a \tan \left (d x +c \right )+b^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(69\)
default \(\frac {a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 b a \tan \left (d x +c \right )+b^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(69\)
norman \(\frac {\frac {b \left (4 a +b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {b \left (4 a -b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {\left (2 a^{2}+b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {\left (2 a^{2}+b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(114\)
risch \(-\frac {i b \left (b \,{\mathrm e}^{3 i \left (d x +c \right )}-4 a \,{\mathrm e}^{2 i \left (d x +c \right )}-b \,{\mathrm e}^{i \left (d x +c \right )}-4 a \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) b^{2}}{2 d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) b^{2}}{2 d}\) \(144\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*ln(sec(d*x+c)+tan(d*x+c))+2*b*a*tan(d*x+c)+b^2*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c
))))

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 80, normalized size = 1.36 \begin {gather*} -\frac {b^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 4 \, a^{2} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) - 8 \, a b \tan \left (d x + c\right )}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/4*(b^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 4*a^2*log(se
c(d*x + c) + tan(d*x + c)) - 8*a*b*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 2.93, size = 93, normalized size = 1.58 \begin {gather*} \frac {{\left (2 \, a^{2} + b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (2 \, a^{2} + b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, a b \cos \left (d x + c\right ) + b^{2}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/4*((2*a^2 + b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (2*a^2 + b^2)*cos(d*x + c)^2*log(-sin(d*x + c) + 1)
+ 2*(4*a*b*cos(d*x + c) + b^2)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sec {\left (c + d x \right )}\right )^{2} \sec {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**2*sec(c + d*x), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 129 vs. \(2 (55) = 110\).
time = 0.43, size = 129, normalized size = 2.19 \begin {gather*} \frac {{\left (2 \, a^{2} + b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (2 \, a^{2} + b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (4 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*((2*a^2 + b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (2*a^2 + b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(
4*a*b*tan(1/2*d*x + 1/2*c)^3 - b^2*tan(1/2*d*x + 1/2*c)^3 - 4*a*b*tan(1/2*d*x + 1/2*c) - b^2*tan(1/2*d*x + 1/2
*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d

________________________________________________________________________________________

Mupad [B]
time = 1.53, size = 99, normalized size = 1.68 \begin {gather*} \frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (2\,a^2+b^2\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (4\,a\,b-b^2\right )-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (b^2+4\,a\,b\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^2/cos(c + d*x),x)

[Out]

(atanh(tan(c/2 + (d*x)/2))*(2*a^2 + b^2))/d - (tan(c/2 + (d*x)/2)^3*(4*a*b - b^2) - tan(c/2 + (d*x)/2)*(4*a*b
+ b^2))/(d*(tan(c/2 + (d*x)/2)^4 - 2*tan(c/2 + (d*x)/2)^2 + 1))

________________________________________________________________________________________